10.11.2021

Trinkwasseruntersuchung vom September 2021 mit einwandfreiem Ergebnis

Der Zweckverband zur Wasserversorgung der Pretzabrucker Gruppe hat im September 2021 eine umfassende Trinkwasseruntersuchung von einem unabhängigen Labor durchführen lassen. Das Ergebnis ist sehr erfreulich: Die Analysenergebnisse entsprechen den Anforderungen der Trinkwasserverordnung. Die Probe ist bakteriologisch einwandfrei. Es gab keine Überschreitung der Grenzwerte für die chemischen Parameter. Die Untersuchung nach der Trinkwasserverordnung ergab im Detail folgende Ergebnisse (Prüfbericht Nr. 21-0910705/-1 der Labor Kneißler GmbH & Co. KG, Burglengenfeld):

Prüfberichtsnummer: 21-0910705
Probennummer: 21-0910705

Projekt: Trinkwasseruntersuchung

Probenahme durch: M. Emmerich, Labor Kneißler

Eingangsdatum: 23.09.2021
Untersuchungsbeginn: 23.09.2021
Untersuchungsende: 05.10.2021
Probenart: Trinkwasser

Einsender: Pretzabrucker Gruppe ZV - Schwarzenfeld **Verteiler:** Gesundheitsamt Schwandorf (SEBAM)

Probenahmeort: Öffentl.WV Pretzabrucker Gruppe

Entnahmestelle: Asbach, Pumpwerk, Rohrkeller, PN-Hahn

LfW-Objektkennzahl: 1230 6638 00102 **Probenahmedatum:** 23.09.2021, 09:40

Angaben zur Probenahme

Parameter	Einheit	Ergebnis	GW	Verfahren
Probenahme		X		DIN ISO 5667-5: 2011-02 (A4)
Probenahmezweck nach EN ISO 19458		Α	1/	EN ISO 19458: 2006-08 (K19)
Desinfektion der Probenahmestelle		thermisch		EN ISO 19458: 2006-08 (K19)

Trinkwasserverordnung: Parameter der Gruppe A

Parameter	Einheit	Ergebnis	GW	Verfahren
Wassertemperatur (vor Ort)	°C	11,0		DIN 38404-4:1976-12 (C4)
Koloniezahl bei 22 °C	KBE/ml	0	100	TrinkwV § 15 (1c) 2018-01
Koloniezahl bei 36 °C	KBE/ml	0	100	TrinkwV § 15 (1c) 2018-01
Coliforme Bakterien	KBE/100 ml	0	0	DIN EN ISO 9308-2:2014-06
Escherichia coli	KBE/100 ml	0	0	DIN EN ISO 9308-2:2014-06
Enterokokken	KBE/100 ml	0	0	DIN EN ISO 7899-2:2000-11
pH-Wert (vor Ort)		8,6	6,5 - 9,5	DIN EN ISO 10523: 2012-04 (C5)

Trinkwasserverordnung: Parameter der Gruppe A

Parameter	Einheit	Ergebnis	GW	Verfahren
elektrische Leitfähigkeit bei 25 °C (vor Ort)	μS/cm	201	2790	DIN EN 27888: 1993-11 (C8)
Färbung (spektraler Absorptionskoeffizient bei 436 nm)	m-1	<0,1	0,5	DIN EN ISO 7887 - Verfahren B: 2012-04 (C1)
Trübung, quantitativ	NTU	0,2	1,0	DIN EN ISO 7027-1:2016-11 (C 21)
Geruch (organoleptisch, vor Ort)		ohne	ohne anormale Veränderung	DIN EN 1622 - Anhang C: 2006-10 (B3)
Geruchsschwellenwert		1	3 bei 23°C	DIN EN 1622 - Anlage C: 2006- 10 (B3)
Geschmack (organoleptisch, vor Ort)		ohne	ohne anormale Veränderung	DEV B1/2 Teil a: 1971

Trinkwasserverordnung: Parameter Gruppe B: Anlage 2 Teil I

Parameter	Einheit	Ergebnis	GW	Verfahren
Benzol	μg/l	<0,25 *	1,0	DIN 38407-43:2014 (F43)
Bor	mg/l	<0,06	1,0	DIN EN ISO 17294-2: 2005-02 (E29)
Bromat	mg/l	<0,0005 *	0,010	QMAA-IA-91:2020-01 (LC- MS/MS)
Chrom	mg/l	<0,0004	0,050	DIN EN ISO 17294-2: 2005-02 (E29)
Cyanid, gesamt	mg/l	<0,005	0,050	DIN EN ISO 14403-2:2012-10 (D 3)
1,2 Dichlorethan	μg/l	<0,3 *	3,0	DIN 38407-43:2014 (F43)
Fluorid	mg/l	0,18	1,5	DIN EN ISO 10304-1:2009-07 (D20)
Nitrat	mg/l	19	50	DIN EN ISO 10304-1:2009-07 (D20)
Parameter Nitrat/50 + Nitrit/3 (berechnet)	mg/l	0,380	1	berechnet
Quecksilber	mg/l	<0,00002	0,0010	DIN EN ISO 17294-2: 2005-02 (E29), modifiziert
Selen	mg/l	<0,0003	0,010	DIN EN ISO 17294-2: 2005-02 (E29)
Trichlorethen	μg/l	<1 *	10,0	DIN 38407-43:2014 (F43)
Tetrachlorethen	μg/l	<1	10,0	DIN 38407-43:2014 (F43)
Summe aus Trichlorethen und Tetrachlorethen	μg/l	0	10,0	DIN 38407-43:2014 (F43)
Uran	μg/l	<0,1	10,0	DIN EN ISO 17294-2: 2005-02 (E29)

Trinkwasserverordnung: Parameter Gruppe B: Anlage 2 Teil II

Parameter	Einheit	Ergebnis	GW	Verfahren
Antimon	mg/l	<0,0001	0,0050	DIN EN ISO 17294-2: 2005-02 (E29)
Arsen	mg/l	<0,0001	0,010	DIN EN ISO 17294-2: 2005-02 (E29)
Benzo(a)-pyren	μg/l	<0,0025 *	0,010	DIN 38407-39:2011-09 (F39)
Blei	mg/l	<0,0003	0,010	DIN EN ISO 17294-2: 2005-02 (E29)
Cadmium	mg/l	<0,0001	0,0030	DIN EN ISO 17294-2: 2005-02 (E29)
Kupfer	mg/l	<0,004	2,0	DIN EN ISO 17294-2: 2005-02 (E29)
Nickel	mg/l	<0,0001	0,020	DIN EN ISO 17294-2: 2005-02 (E29)
Nitrit	mg/l	<0,05	0,50	DIN EN ISO 13395:1996-12 (D 28)
Benzo-(b)-fluoranthen	μg/l	<0,025 *		DIN 38407-39:2011-09 (F39)

Parameter	Einheit	Ergebnis	GW	Verfahren
Benzo-(k)-fluoranthen	μg/l	<0,025 *		DIN 38407-39:2011-09 (F39)
Benzo-(ghi)-perylen	μg/l	<0,025 *		DIN 38407-39:2011-09 (F39)
Indeno(1,2,3-cd)-pyren	μg/l	<0,025 *		DIN 38407-39:2011-09 (F39)
Summe polycyclische aromatische Kohlenwasserstoffe	μg/l	0	0,10	DIN 38407-39:2011-09 (F39)

Trinkwasserverordnung: Parameter Gruppe B. Anlage 3 Teil I (Indikatorparameter)

Parameter	Einheit	Ergebnis	GW	Verfahren
Aluminium	mg/l	<0,004	0,200	DIN EN ISO 17294-2: 2005-02 (E29)
Ammonium	mg/l	<0,05	0,50	DIN EN ISO 11732:2005-05 (E 23)
Chlorid	mg/l	9,4	250	DIN EN ISO 10304-1:2009-07 (D20)
Eisen	mg/l	0,004	0,200	DIN EN ISO 17294-2: 2005-02 (E29), Kollisionszelle
Mangan	mg/l	0,0007	0,050	DIN EN ISO 17294-2: 2005-02 (E29)
Natrium	mg/l	2,98	200	DIN EN ISO 17294-2: 2005-02 (E29)
Gesamter organischer Kohlenstoff (TOC)	mg/l	0,48	ohne anormale Veränderung	DIN EN 1484: 2019-04 (H 3)
Sulfat	mg/l	6,6	250	DIN EN ISO 10304-1:2009-07 (D20)

Trinkwasserverodnung: Parameter Gruppe B: korrosionschemische Untersuchung

Parameter	Einheit	Ergebnis	GW	Verfahren
Säurekapazität bis pH 8,2	mmol/l	<0,05		DIN 38409: 2005-12 (H7-1)
Säurekapazität bis pH 4,3	mmol/l	1,3		DIN 38409: 2005-12 (H7-2)
Basenkapazität bis pH 8,2	mmol/l	0,0		DIN 38409: 2005-12 (H7-4-1)
Calcium	mg/l	23,8		DIN EN ISO 17294-2: 2005-02 (E29)
Magnesium	mg/l	6,43		DIN EN ISO 17294-2: 2005-02 (E29)
Kalium	mg/l	2,17		DIN EN ISO 17294-2: 2005-02 (E29)
Calcitlösekapazität	mg/l	-1,8	5	DIN 38404-10: 2012-12 (C10)
Gesamthärte als CaCO3	mmol/l	0,86		DIN 38409-6: 1986-01 (H6)
Gesamthärte	°dH	4,81		DIN 38409-6: 1986-01 (H6)
Härtebereich nach WRMG		weich		berechnet
Kohlensäure, frei (CO2)	mg/l	0,35		Berechnet
Kohlensäure, zugehörig (CO2)	mg/l	0,35		Berechnet
Kohlensäure, überschüssig (CO2)	mg/l	0,00		Berechnet
Korrosionsquotient (S1)		0,60	<0,5	berechnet
Anionenquotient (S2)		1,31	<1 bzw.>3	berechnet
Kupferquotient (S)		17,35	>1,5	berechnet

Fußnoten

* Der angegebene Wert entspricht der Bestimmungsgrenze

Verantwortliche Prüfleiter

Caroline Nolten, Master of Science, Mikrobiologie
Dr. Nicole Meißner, staatl. gepr. Lebensmittelchemikerin
Dr. Thomas Hofmann, staatl. gepr. Diplom-Lebensmittelchemiker
Simone Bäumler, Master of Science, Chemie

Stefanie Winkler, B.Sc. Applied Chemistry

Verantwortlich für Prüfbericht/Beurteilung

Dr. Stefan Dorsch, Diplom-Chemiker

Mikrobiologie
Chemie
Gaschromatographie
Flüssigchromatographie
lonenchromatographie
Elementanalytik

Beurteilung als Anlage zum Prüfbericht 21-0910705

Die Untersuchungsergebnisse entsprechen zum Zeitpunkt der Probenahme den Anforderungen der TrinkwV (TrinkwV) in der aktuell gültigen Fassung.

Die Probe ist zum Zeitpunkt der Probenahme hinsichtlich der untersuchten Parameter bakteriologisch einwandfrei.

Für die untersuchten chemischen Parameter liegen keine Überschreitungen der Grenzwerte vor. Für die Indikatorparameter werden die Anforderungen eingehalten bzw. die Grenzwerte unterschritten. Der Korrosionsquotient S nach DIN EN 12502 und DIN 50930 ist unauffällig.

Das untersuchte Trinkwasser weist einen Härtegrad von 0,86 mmol auf und ist damit nach WRMG dem Härtebereich weich zuzuordnen.

Korrosionsquotienten nach DIN EN 12502 und DIN 50930:

 S_1 : Die Wahrscheinlichkeit der ungleichmäßigen Flächenkorrosion unter Ausbildung von Mulden- und Lochfraß ist bei niedrig- und unlegierten sowie schmelztauchverzinkten Eisenwerkstoffen gering, wenn $S_1 < 0.5$ ist.

 S_2 : Die Wahrscheinlichkeit der selektiven Korrosion bei schmelztauchverzinkten Eisenwerkstoffen (Austrag von zinkhaltigen Partikeln, Zinkgeriesel) ist gering, wenn $S_2 < 1$ bzw. $S_2 > 3$ oder die Nitratkonzentration < 20 mg/l beträgt.

S: Die Wahrscheinlichkeit der Lochkorrosion in Warmwasserleitungen ist bei Kupfer und Kupferwerkstoffen gering, wenn S > 1,5 ist.

Hinweis zur den berechneten Parametern Summe Tetrachlorethen+Trichlorethen, Summe PAK, Nitrat/50+Nitrit/3:

Zur Berechnung werden die tatsächlichen analytisch bestimmten Werte eingesetzt. Werte, die kleiner als die Bestimmungsgrenze sind, werden gleich Null gesetzt.

GW: Grenzwert gem. TrinkwV bzw. Richtwert gem. DIN EN 12502 bzw. DIN 50930.

Anlage zum Prüfbericht: 21-0910705

Korrosionschemische Beurteilung:

Die Korrosionswahrscheinlichkeiten für metallische Werkstoffe in der Trinkwasserinstallation sind als gering anzusehen, wenn die Anforderungen der DIN EN 12502 Teile 1-5 und DIN 50930 Teil 6 eingehalten sind. Vorausgesetzt wird ein ausreichend hoher Sauerstoffgehalt im Versorgungsnetz von mindestens 3,2 mg/l.

Parameter	Einheit	Anforderung	eingehalten
Anforderungen TrinkwV			
pH-Wert		≥ 7,7	ja
Calcitlösekapazität	mg/l	oder ≤ 5,0 mg/l (als Calciumcarbonat)	
Korrosionschemische Anforderun	l gen nach [DIN EN 12502 Teile 1-5 und DIN 50930 Teil 6:	
Gusseisen, niedrig- und unlegierte	Eisenwer	kstoffe:	
Schutzschichten unter Ausbildung g	gleichmäßig	er Flächenkorrosion können sich bilden, wenn:	
pH-Wert		> 7,0	nein
Calcium	mg/l	und > 40 mg/l	
Säurekapazität bis pH 4,3	mmol/l	und > 2,0 mmol/l	
	n, da sich ko	isenwerkstoffe oder Gusseisen in ständig durchströ eine schützenden Deckschichten aufbauen können.	
Die Wahrscheinlichkeit für Lochkorr	osion ist ge	ering, wenn:	
Quotient S ₁		S ₁ < 0,5 (für S ₁ > 3 ist die Korrosion sehr wahrscheinlich) und	nein
Calcium	mg/l	≥ 20 mg/l und	
Säurekapazität bis pH 4,3	mmol/l	≥ 2,0 mmol/l	
Die Wahrscheinlichkeit für selektive	Korrosion		
Quotient S ₂		$S_2 < 1$ oder $S_2 > 3$ oder	ja
Nitrat	mg/l	< 20 mg/l	
Wahrscheinlich der Freisetzung von	Korrosior	nsprodukten ist gering; wenn:	l
Säurekapazität bis pH 4,3	mmol/l	≥ 2,0 mmol/l	nein
Basekapazität bis pH 8,2	mmol/l	und ≤ 0,5 mmol/l	
Die Verwendung schmelztauchverzir für Lochkorrosion und die Freisetzun	ikter Eisenv g von Korro	l verkstoffe kann nicht empfohlen werden, da die Wal osionsprodukten erhöht ist.	hrscheinlichke
Unabhängig von der Wasserzusamm Eisenwerkstoffe in der Warmwasseri		wird nach einer DVGW-Empfehlung, vom Einsatz v abgeraten.	erzinkter

Die Wahrscheinlichkeit für Lochkorr	031011 111 1	gen iet gennig, nenni	
Quotient S		S ≥ 1,5	ja
Die Wahrscheinlichkeit für gleichmä	ßige Fläch	nenkorrosion ist gering, wenn	•
pH-Wert		≥ 7,5	ja
		und	
Säurekapazität bis pH 4,3	mmol/l	≥ 1,0 mmol/l	
Wahrscheinlich der Freisetzung von	Korrosio	nsprodukten ist gering; wenn:	•
pH-Wert		>71	ja
pri-vvort		≥ 7,4	ja ja
·		oder	Ja
pH-Wert und TOC	gegenüber	oder 7,0 ≤ pH ≤ 7,4 und TOC 1,5 ≤ mg/l	
pH-Wert und TOC Die Korrosionswahrscheinlichkeiten geinzustufen.		oder	
pH-Wert und TOC Die Korrosionswahrscheinlichkeiten geinzustufen.		oder 7,0 ≤ pH ≤ 7,4 und TOC 1,5 ≤ mg/l Werkstoffen aus Kupfer und Kupferlegierungen s	
pH-Wert und TOC Die Korrosionswahrscheinlichkeiten geinzustufen. Werkstoffe aus Kupfer- und Kupferle	gierungen	oder 7,0 ≤ pH ≤ 7,4 und TOC 1,5 ≤ mg/l Werkstoffen aus Kupfer und Kupferlegierungen s können uneingeschränkt verwendet werden.	
pH-Wert und TOC Die Korrosionswahrscheinlichkeiten geinzustufen. Werkstoffe aus Kupfer- und Kupferleg Nichtrostende Stähle:	gierungen	oder 7,0 ≤ pH ≤ 7,4 und TOC 1,5 ≤ mg/l Werkstoffen aus Kupfer und Kupferlegierungen s können uneingeschränkt verwendet werden.	

Prüfberichtsnummer: 21-0910705/1
Probennummer: 21-0910705/1

Projekt: Trinkwasseruntersuchung

Probenahme durch: M. Emmerich, Labor Kneißler

Eingangsdatum: 23.09.2021
Untersuchungsbeginn: 23.09.2021
Untersuchungsende: 02.11.2021
Probenart: Trinkwasser

Einsender: Pretzabrucker Gruppe ZV - Schwarzenfeld **Verteiler:** Gesundheitsamt Schwandorf (SEBAM)

Probenahmeort: Öffentl.WV Pretzabrucker Gruppe

Entnahmestelle: Asbach, Pumpwerk, Rohrkeller, PN-Hahn

LfW-Objektkennzahl: 1230 6638 00102 **Probenahmedatum:** 23.09.2021, 09:42

Chemische Untersuchung

Parameter	Einheit	Ergebnis	GW	Verfahren
Wassertemperatur (vor Ort)	°C	11,0		DIN 38404-4:1976-12 (C4)

Untersuchung auf Pflanzenschutzmittelwirkstoffe (Paket: Geteide, Mais, Raps, Kartoffeln, Grünland)

Parameter	Einheit	Ergebnis	GW	Verfahren
Atrazin	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Desethylatrazin	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Desethylsimazin	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Desethylterbutylazin	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Diuron	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Ethidimuron	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Propazin	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Simazin	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Aclonifen	μg/l	<0,014	0,10	DIN 38407-37:2013-11 (F37)
alpha-Cypermethrin	μg/l	<0,01	0,10	DIN 38407-37:2013-11 (F37)

Parameter	Einheit	Ergebnis	GW	Verfahren
Azoxystrobin	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Bentazon	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Boscalid	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Bromoxynil	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Chlorthalonil	μg/l	<0,009	0,10	DIN 38407-37:2013-11 (F37)
Chlortoluron	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Clomazone	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Clothianidin	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Cyproconazol	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Dicamba	μg/l	<0,01	0,10	DIN 38407-36:2014-09 (F36)
Dichlorprop-P	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Difenoconazol	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Diflufenican	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Dimethachlor	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Dimethenamid-P	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Dimethoat	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Dimethomorph	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Dimoxystrobin	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Epoxiconazol	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Fenoxaprop	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Fenpropidin	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Fenpropimorph	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Florasulam	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Fluazinam	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Flufenacet	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Fluopicolide	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Fluroxypyr	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Flurtamone	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Glyphosat	μg/l	<0,03	0,10	ISO 16308:2014-09
Imidacloprid	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
lodosulfuron-methyl	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Isoproturon	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Kresoxim-methyl	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
lambda-Cyhalothrin	μg/l	<0,013	0,10	DIN 38407-37:2013-11 (F37)
MCPA	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Mesotrione	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Metalaxyl	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Metazachlor	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Metolachlor-S	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Metribuzin	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Napropamid	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Nicosulfuron	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)

Parameter	Einheit	Ergebnis	GW	Verfahren
Pendimethalin	μg/l	<0,02	0,10	DIN 38407-37:2013-11 (F37)
Pethoxamid	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Propamocarb	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Propiconazol	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Prosulfocarb	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Prosulfuron	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Prothioconazol	μg/l	<0,03	0,10	DIN 38407-36:2014-09 (F36)
Pymetrozin	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Pyraclostrobin	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Quinmerac	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Rimsulfuron	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Spiroxamine	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Tebuconazol	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Terbutylazin	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Thiacloprid	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Triadimenol	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Summe der untersuchten Pflanzenschutzmittel	μg/l	0	0,50	Berechnet

Verantwortliche Prüfleiter

Dr. Nicole Meißner, staatl. gepr. Lebensmittelchemikerin

Analytik auf Pflanzenschutzmittelrückstände

Verantwortlich für Prüfbericht/Beurteilung

Dr. Stefan Dorsch, Diplom-Chemiker

Beurteilung als Anlage zum Prüfbericht 21-0910705/1

Das untersuchte Wasser entspricht zum Zeitpunkt der Probenahme bzgl. der untersuchten Parameter den Anforderungen der Trinkwasserverordnung (TrinkwV) in der aktuell gültigen Fassung.

GW: Grenzwert gem. TrinkwV